
Data Distribution

Version 1.0 1 07/22/97-10:24 AM

Data Distribution & Processing CSCI
Data Distribution CSC

Design Review

June 17, 1997
Version 1.0

Data Distribution

Version 1.0 2 07/22/97-10:24 AM

1. Data Distribution & Processing CSCI

The Data Distribution & Processing CSCI is composed of the following CSCs:

Data Distribution CSC, Data Fusion CSC, and Data Health CSC.

1.1 Data Distribution CSC Introduction

1.1.1 Data Distribution CSC Overview

The Data Distribution CSC resides in the Data Distribution Processor (DDP), the Human
Computer Interface (HCI), and the Command and Control Processor (CCP). The Data
Distribution CSC running in the DDP provides the capability to read FD data from the Gateways
and distribute it to the RTCN and DCN. The Data Distribution CSC running in the CCP and HCI
provides the capability to receive FD data from DDP and make it available to Command, user
applications, and user displays.

Data Distribution CSC Overview is as follows:

Current
Value
Table

Current
Value
Table

Current
Value
Table

Data Distribution Processing
- Access OLDB and build CVT
- Receive FD data from RTCN
- Update CVT
- Send FD values/status/timestamp to
 requesting application
- Build Data Distribution (DD) Packet
- Output DD packets to RTCN and DCN
- Send system messages

- Constraint
- Data Fusion
- Data Health

System/Application Services
- System Messages Services
- Network Services
- FD services

SSR
Gateway

Data Distribution Processing
- Access OLDB and build CVT
- Read DD packet on DCN
- Update CVT
- Send FD values/status/timestamp
 to requesting application
- Send system messages

System/Application services
- System Messages Services
- Network Services
- FD Services
- User Display Services

Applications
- User Displays
- User Application

Data Distribution Processing
- Access OLDB and build CVT
- Read DD packets on RTCN
- Update CVT
- Send FD values/status/timestamp
 to requesting applications
- Send system messages

System/Application Services
- System Messages Services
- Network Services
- FD Services

EIM

DD Packet
 DSR

DD packet
 SSR

OLDB

CCP

DDP

HCI

Data Distribution

Version 1.0 3 07/22/97-10:24 AM

1.1.2 Data Distribution CSC Operational Description

The Data Distribution CSC supports end-to-end data flow from the point where data is received at
the DDP from the Gateway over the RTCN, to the point where data is delivered to the user
applications and/or user displays.

1.2 Data Distribution CSC Specifications

1.2.1 Data Distribution CSC Ground Rules

1. For Redstone delivery, Data Distribution will not request a resend of data from its data
source, assuming no data will be dropped via the use of Reliable Messages Capability
(Resend request to Redundancy Management will be addressed in a later delivery).

2. Each Gateway stream will have an unique multicast stream name.

3. Stream names, for a given activity will be read from a file for Redstone delivery. A
long term solution of including that as part of Activity definition will be addressed in
a later delivery.

4. Data packet received from the same Gateway is already in ”time-order.”

5. No time validation will be performed on the packets from the Gateways.

6. Each Gateway will send data packets to the RTCN at the System Synchronous Rate
(SSR).

7. Time intervals between Gateway sends for the same SSR cycle will be handled by the
Gateways. Data Distribution processing will be completely data driven. DD output
rate is based on input rate coming from the Gateways. Data will be output to RTCN
as soon as DD processing is complete.

8. An empty packet will be sent by the Gateway if there is no data changed within an
SSR cycle.

9. Display Attributes processing for Redstone is not supported

10. All applications, with exception of Data Fusion, Data Health, and Constraint
Management, will interface with Data Distribution via FD Services.

12. Data Distribution will access the OLDB via FD Services.

13. Application derived FDs will not be supported for Redstone.

14. Time Homogeneous Data Sets (THDS) will not be supported for Redstone.

15. The FD value override capability will not be provided for Redstone.

16. Persistent data/checkpoint will not be supported for Redstone.

17. Interface with Constraint Management will not be supported for Redstone.

18. Data refresh will not be supported for Redstone.

19. Redundancy management will not be supported for Redstone.

Data Distribution

Version 1.0 4 07/22/97-10:24 AM

1.2.2 Data Distribution CSC Functional Requirements

1.2.2.1 Data Distribution (DD) at the DDP

1. DD will receive Gateway Changed Data Packets on the RTCN.

2. DD will support at least 20 Gateways simultaneously on a single DDP.

3. DD will provide the capability to perform time-reordering on the data packets
received across all the Gateways.

4. DD will provide the capability to perform time-reordering based on the time value(s)
provided in the DD Packet Payload data.

5. DD will send a system message if no packet is received from a Gateway at
the end of the System Synchronous Rate (SSR) cycle.

6. DD will merge data packets received from the RTCN.

7. DD will provide the capability to build Data Distribution Packets based on the CLCS
DD Packet Payload format.

8. DD will distribute the following information in the Data Distribution packets:

a. Data value

b. Health Data status

c. Timestamp

10. DD will provide the capability to output Data Distribution packets to the RTCN at the
System Synchronous Rate (SSR).

11. DD will provide the capability to buffer Data Distribution packets and output DD
packets to the DCN at the Display Synchronous Rate (DSR).

1.2.2.2 Data Distribution at the CCP

1. DD will receive Data Distribution packets on the RTCN.

2. DD will send a system message if no packet is received from the RTCN at the end of
the SSR.

1.2.2.3 Data Distribution at the HCI

1. DD will receive Data Distribution packets on the DCN.

2. DD will send a system message if no packet is received from the DCN at the end of a
DSR cycle.

1.2.2.4 Data Distribution (DD) at the DDP/CCP/HCI

1. DD will initialize the CVT with the information contained in the Online Data

 Bank (OLDB).

2. DD will provide the capability to update the CVT with changed data.

Data Distribution

Version 1.0 5 07/22/97-10:24 AM

3. DD will provide the capability to update the CVT with FD data:

a. Raw or EU data

b. Health Data Values

c. Status/State Values

d. Timestamp

e. Display Attributes (TBD)

4. DD will provide an application interface allowing an application to:

a. subscribe to FD data

b. publish FD data

5. DD will provide an application interface allowing applications to access, on demand,
the following data for an FD or a list of FDs:

a. Raw or EU data

b. Health Data Values

c. Status/State Values

d. Timestamp

6. DD will provide an application interface allowing applications to access, on a
“change only” basis, the following data for a FD or a list of FDs:

a. Raw or EU data

b. Health Data Values

c. Status/State Values

d. Timestamp

7. DD will provide the capability to maintain statistics on packet rates and data rates in an internal
table.

1.2.3 Data Distribution CSC Performance Requirements

1. DD will be able to process up to 25,000 change FDs from the Gateway(s) per second.

2. DD will be able to process up to 50,000 change FDs from the Gateway(s) in a given
second without losing any data.

3. DD will be able to incorporate 5,000 processed FDs (fused FDs and Health status)
into the CVT per second.

Data Distribution

Version 1.0 6 07/22/97-10:24 AM

1.2.4 Data Distribution CSC Interfaces

System
Control

NRS

Reliable
Messages

 Data
Distribution

Applications
(via FDservice)

 System
Messages

Data Distribution Context Diagram

TCID information

FD Value requests

FD Value

System Config Info reqs.
System Config Info

Register/deregister req.

Register/deregister resp.

Send multicast data

Receive multicast data
Send system message

 OLDB
(via FD service)

Constraint Manager/Data Fusion/Data Health
 (via Data Distribution private APIs)

Get FD dataStore FD data

Data Distribution

Version 1.0 7 07/22/97-10:24 AM

1.2.5 Data Distribution CSC Data Flow Diagram

External

System/
Application
Services

- System
 Messages

- Network
 Services

Data
Distribution

FD
Services

CVT

OLDB

User
Application

DD
APIs

FD
Services
APIs

retrieve FD
information

Request FD
information

Data Response

Data Request

TCID Info

Request
TCID info

Internal

Data
Distribution

Fusion
Process

CVT

DDP server
Process

DDP
send
Process

 DDP
merger
Process

input
change
data

all input,
fused, &
health
data

DSR change data DDP recv
Process

DDP
fusion

fusion
outputs

fusion
inputs

health
inputs

health
outputs

DDP Health
Process

DDP

HCICVT

 SSR
Change data

DDP server
Process

DDP recv
Process

CCPCVT

Data Distribution

Version 1.0 8 07/22/97-10:24 AM

1.3 Data Distribution CSC Design Specification

The Data Distribution CSC supports end-to-end data flow from the point where data is received at
the DDP from the Gateways over the RTCN, to the point where data is delivered to the user
applications and/or user displays.

The Data Distribution CSC on the DDP will perform these functions:

1. Receive gateway changed data packets on the RTCN

2. Perform time-reordering on the data packets received from the Gateways

3. Buffer distributed data packets and output packets to the DCN at the DSR

4. Buffer distributed data packets and output packets to the RTCN at the SSR

5. Provide data to the Data Fusion CSC and the Data Health CSC

6. Incorporate fusion and health data into the data stream

The Data Distribution CSC on the HCI will perform these functions:

1. Receive distributed data packets on the DCN

2. Distribute packets to clients (i.e. display applications, viewers, user applications)

The Data Distribution CSC on the CCP will perform these functions

1. Receive distributed data packets on the RTCN

2. Distribute packets to clients (i.e. end item managers)

Data Distribution

Version 1.0 9 07/22/97-10:24 AM

1.3.1 Data Distribution Detailed Data Flow

1.3.1.1 DDP Detailed Data Flow

cvt
apis

memory
apis

ddp_receiver

ddp_server

ddp_sender

socket interfaces

queue interfaces

DDP

health

Network
Services

Gateways
CCP

Data Health
Data Fusion

CVT

Client
LinkList

publish
gateway data
packets

publish
health/fusion
output data

request
health/fusion
input data

request
all changed
data

queued
data to be
published

metro/gms/sds
Packet payload
data

metro/gms/sds/
fusion/health
Packet payload
 data

OLDB

reliable
messaging

all changed
 data to
registered
clients

reliable
messaging

Network
Services

ddp application
program interfaces

System
Messages

configuration
information tcid

information

error/info
messages

error/info
messages

error/info
messages

socket interfaces

queue interfaces

ddp application
program interfaces

HCI

System
Control

Activity
information Activity

information

DCNRTCN

The Data Distribution CSC interfaces with Network Services both to receive data from the
Gateways, and send data out to the CCP and HCIs. Error conditions that are encountered by Data
Distribution are written to System Messaging. At initialization, System Control provides the
configuration information to build the multicast addresses, and determine the number of Gateways.

Data Distribution

Version 1.0 10 07/22/97-10:24 AM

Data is merged from the Gateways in the ddp_receiver process and sent in time order to the
ddp_server. The ddp_server process stores data in the current value table and sends all changed
values to the ddp_sender process, the Data Fusion CSC, and the Data Health CSC. The
ddp_sender process buffers the changed values into 10ms buffers and 100ms buffers to output to
the CCP and HCIs respectively.

Data Distribution

Version 1.0 11 07/22/97-10:24 AM

1.3.1.2 CCP/HCI Detailed Data Flow

cvt
apis

memory
apis

ddp_receiver

ddp_server

socket interfaces

queue interfaces

CCP/HCI

Network
Services

DDP

Viewers

CVT

Client
LinkList

publish
Data Distribution
packets

request
subscribed
changed
 data

queued
data to be
published

Data Distribution
packets

reliable
messaging

all changed
 data to
registered
clients

ddp application
program interfaces

System
Messages

configuration
information

tcid
information

error/info
messages

error/info
messages

socket interfaces

queue interfaces

ddp application
program interfaces

System
Control

Activity
information

publish
application
derived FDs

Display Applications

End Item Managers

FD
Services

FD Services

The ddp_receiver process on the HCI and CCP receives data from the DDP at 10ms (RTCN SSR)
and 100ms (DCN DSR) rates on the CCP and HCI’s respectively. The ddp_receiver parses the
data buffer and publishes the changed data values to the ddp_server. The ddp_server process
stores the changed values in the CVT. The ddp_server sends the changed values to the clients (i.e.
display applications, viewers, and end item managers).

Data Distribution

Version 1.0 12 07/22/97-10:24 AM

1.3.1.3 Data Distribution Proposed Performance Layout

ddp_server

DDP

ddp_sender

ddp_receiver
.
.

2.5KB

2.9KB

 2KB

 2KB

10ms

CPU0

CPU1

CPU2

CPU3-n

10ms

100ms

5ms

5ms

.5KB

2KB

.1KB

.2KB

RTCN

DCN

5.8KB

58KB

4KB

Operating
System

ddp_
manager

5KB

.8KB

cpu
3

cpu
 4

cpu
 ’n’

fusion
algorithms

health
algorithms

ddp_
manager

constraint
management
display attrs

G
A
T
E
W
A
Y
S

ddp_
manager

Data Flow Parameters

1. Approximately 40K FDs in the OLDB (FDs from gateway only; 80K FDs with fusion; ~100K
FDs with pseudo FDs).

2. Average of 8 bytes per packet (32 bit analog).

3. 4KB bytes per 10ms from the Gateway (8bytes * 500 samples = 4K per ms)

4. Approximately 5KB transferred from the receiver every 10ms (4K + hdr/time delta)

Data Distribution

Version 1.0 13 07/22/97-10:24 AM

5. Approximately 5.8KB transferred from the DDP every 10ms (Gateway data and fusion/health
data)

6. Approximately 20ms latency (10ms in the receiver collecting Gateway data, and 10ms in the
server/sender)

ddp_server

HCI
ddp_receiver

29KB

CPU0

5ms

Appl Serv.

58KB

5KB

display
applications

viewers

D
C
N
L
A
N

.5KB

Data Flow Parameters

1. Approximately 58K will be received every 100ms from the DDP at the HCI
2. Approximately 5KB transferred from the server to the clients every 100ms

Data Distribution

Version 1.0 14 07/22/97-10:24 AM

ddp_server

CCP
ddp_receiver

2.9KB

CPU0

5ms

5.8KB

2KB

end item
managers

R
T
C
N
L
A
N
S

Data Flow Parameters

1. Approximately 5.8K will be received every 10ms from the DDP at the CCP
2. Approximately 2KB transferred from the server to the clients every 10ms

Data Distribution

Version 1.0 15 07/22/97-10:24 AM

1.3.2 Data Distribution External Interfaces

1.3.2.1 Data Distribution Message Formats

1.3.2.1.1 ddp_receiver messages

Message Number = 1
Message Group = DDP
Severity = Informational

DDP Receiver is initialized

Help Information Content:
The receiver process has initialized successfully

Detailed Information:
n/a

Message Number = 2
Message Group = DDP
Severity = Critical

DDP Receiver was unable to establish a connection with the server, errno =
#ARGUMENT1#

ARGUMENT1 = unsigned integer representing UNIX error number value

Help Information Content:
During initialization of the DDP services, there was a problem creating a socket
connection between the ddp_server and the ddp_receiver.

Detailed Information:
n/a

Message Number = 3
Message Group = DDP
Severity = Major

DDP Receiver was unable to send an event to the ddp_server, errno =
#ARGUMENT1#

ARGUMENT1 = unsigned integer representing UNIX error number value

Help Information Content:
The ddp_receiver was unable to send the data packet event to the ddp_server, so there
must be a problem with the socket connection.

Detailed Information:
Make sure the ddp_server process is still active.
Check to see if the queue is full.

Data Distribution

Version 1.0 16 07/22/97-10:24 AM

Message Number = 4
Message Group = DDP
Severity = Critical

DDP Receiver was unable to retrieve the configuration information, system_error =
#ARGUMENT1#, errno = #ARGUMENT2#

ARGUMENT1 = unsigned integer representing System Control error
 number value

ARGUMENT2 = unsigned integer representing UNIX error number value

Help Information Content:
The ddp_receiver was unable to retrieve the configuration information needed to define
the multicast address and determine the number of Gateways to be read.

Detailed Information:
For Redstone: For Thor:
Make sure the configuration file exists. See System Control for error conditions.
Make sure the file has read access.

Message Number = 5
Message Group = DDP
Severity = Critical

DDP Receiver was unable to establish a connection with the LAN, mcaddr =
#ARGUMENT1#, errno = #ARGUMENT2#

ARGUMENT1 = multicast address
ARGUMENT2 = unsigned integer representing Network Services error

number value

Help Information Content:
The ddp_receiver was unable to open the lan connection via ”clm_open” from Network
Services.

Detailed Information:
Refer to error conditions provided by Network Services.

Message Number = 6
Message Group = DDP
Severity = Informational

DDP Receiver established connection with the LAN, mcaddr = #ARGUMENT1#

ARGUMENT1 = multicast address

Help Information Content:
n/a

Detailed Information:
n/a

Data Distribution

Version 1.0 17 07/22/97-10:24 AM

Message Number = 7
Message Group = DDP
Severity = Major

DDP Receiver lost the connection with the LAN, mcaddr = #ARGUMENT1#, errno =
#ARGUMENT2#

ARGUMENT1 = multicast address
ARGUMENT2 = unsigned integer representing Network Services error

number value

Help Information Content:
The ddp_receiver was unable to receive data via ”clm_recv” from Network Services.

Detailed Information:
Refer to error conditions provided by Network Services.

Message Number = 8
Message Group = DDP
Severity = Informational

DDP Receiver detected that gateway #ARGUMENT1# has become inactive

ARGUMENT1 = Multicast address for gateway that went inactive

Help Information Content:
The ddp_receiver was unable to receive data from a gateway after TBD milliseconds.

Detailed Information:
Check to make sure the gateway is sending out data.

Message Number = 9
Message Group = DDP
Severity = Informational

DDP Receiver detected that gateway #ARGUMENT1# has become active

ARGUMENT1 = Multicast address for gateway that became active

Help Information Content:
The ddp_receiver is received data after it was previously inactive.

Detailed Information:
n/a

Message Number = 10
Message Group = DDP
Severity = Informational

DDP Receiver is terminating

Help Information Content:
n/a

Data Distribution

Version 1.0 18 07/22/97-10:24 AM

Detailed Information:
n/a

1.3.2.1.2 ddp_server messages

Message Number = 11
Message Group = DDP
Severity = Informational

DDP Server is initialized

Help Information Content:
The server process has initialized successfully.

Detailed Information:
n/a

Message Number = 12
Message Group = DDP
Severity = Critical

DDP Server detected an error reading from the OLDB, oldb_error = #ARGUMENT1#,
errno = #ARGUMENT1#

ARGUMENT1 = unsigned integer representing the FD services error
number value

ARGUMENT2 = unsigned integer representing UNIX error number value

Help Information Content:
The ddp_server was unable to read the online data bank information for initializing the
CVT.

Detailed Information:
See fd_services error numbers for information.

Message Number = 13
Message Group = DDP
Severity = Critical

DDP Server detected an error creating the CVT, errno = #ARGUMENT1#

ARGUMENT1 = unsigned integer representing UNIX error number value

Help Information Content:
The ddp_server was unable to allocate shared memory to create the current value table.

Detailed Information:
Use the UNIX errno to determine the problem.

Message Number = 14
Message Group = DDP
Severity = Critical (on DDP), Major/Minor, based on client on (CCP/HCI)

Data Distribution

Version 1.0 19 07/22/97-10:24 AM

DDP Server lost the connection with a client, name = #ARGUMENT1#, pid =
#ARGUMENT2#

ARGUMENT1 = Process name of client
ARGUMENT2 = Process id of client

Help Information Content:
The ddp_server lost the socket connection with the client. The client will detect it and try
to reconnect.

Detailed Information:
n/a

Message Number = 15
Message Group = DDP
Severity = Informational

DDP Server is terminating

Help Information Content:
n/a

Detailed Information:
n/a

1.3.2.1.3 ddp_sender messages

Message Number = 16
Message Group = DDP
Severity = Informational

DDP Sender is initialized

Help Information Content:
The sender process has initialized successfully.

Detailed Information:
n/a

Message Number = 17
Message Group = DDP
Severity = Critical

DDP Sender was unable to establish a connection with the server, errno =
#ARGUMENT1#

ARGUMENT1 = unsigned integer representing UNIX error number value

Help Information Content:
During initialization of the DDP services, there was a problem creating a socket
connection between the ddp_server and the ddp_sender.

Data Distribution

Version 1.0 20 07/22/97-10:24 AM

Detailed Information:
n/a

Message Number = 18
Message Group = DDP
Severity = Critical

DDP Sender was unable to retrieve the configuration information, system_error =
#ARGUMENT1#, errno = #ARGUMENT2#

ARGUMENT1 = unsigned integer representing System Control error
 number value

ARGUMENT2 = unsigned integer representing UNIX error number value

Help Information Content:
The ddp_receiver was unable to retrieve the configuration information needed to define
the multicast address and determine the number of Gateways to be read.

Detailed Information:
For Redstone: For Thor:
Make sure the configuration file exists. See System Control for error conditions.
Make sure the file has read access.

Message Number = 19
Message Group = DDP
Severity = Informational

DDP Sender established connection with the LAN, mcaddr = #ARGUMENT1#

ARGUMENT1 = multicast address

Help Information Content:
n/a

Detailed Information:
n/a

Message Number = 20
Message Group = DDP
Severity = Critical

DDP Sender lost the connection with the LAN, mcaddr = #ARGUMENT1#, errno =
#ARGUMENT2#

ARGUMENT1 = multicast address
ARGUMENT2 = unsigned integer representing Network Services error

number value

Help Information Content:
The ddp_sender was unable to open the lan connection via ”clm_open” from Network
Services.

Detailed Information:

Data Distribution

Version 1.0 21 07/22/97-10:24 AM

Refer to error conditions provided by Network Services.

Message Number = 21
Message Group = DDP
Severity = Major

DDP Sender was unable to write to the LAN, mcaddr = #ARGUMENT1#, errno =
#ARGUMENT1#

ARGUMENT1 = multicast address
ARGUMENT2 = unsigned integer representing UNIX error number value

Help Information Content:
The ddp_sender was unable to write to the multicast address.

Detailed Information:
Make sure the multicast address is still open.

Message Number = 22
Message Group = DDP
Severity = Informational

DDP Sender is terminating

Help Information Content:
n/a

Detailed Information:
n/a

1.3.2.2 Data Distribution Display Formats

There are no display formats for the DD CSC.

1.3.2.3 Data Distribution Input Formats

There are no input formats for the DD CSC.

1.3.2.4 Data Distribution Recorded Data

Statistical data will be recorded to a file. TBD

1.3.2.5 Data Distribution Printer Formats

There are no printer formats for the DD CSC.

Data Distribution

Version 1.0 22 07/22/97-10:24 AM

1.3.2.6 Data Distribution Inter-process Communication

1.3.2.6.1 Network Services - Packet Payload Formats

These are the packet formats received from the Gateway machines (Ref. RTPS Packet Payload
ICD, 84K00351.000, June 2, 1997, Pre-Release 1 for details).

Packet Payload Layout

packet
payload
header

delta
time
entry

delta
time
entry

SSR message from 1 gateway

packet
Payload
entry

packet
Payload
entry

packet
Payload
entry

packet
payload

packet
payload

packet
payload

15 1314 12 11 10 09 0708 06 0405 03 02 0001

00

02

04

06

08

10

12

14

Packet Payload Header

packet
payload
format

Payload Type Log Flags

Logical Source

Payload length in bytes

Place Spare

Spare

E1 Reserved Julian Date

16 LSB of MSTOD

11 MSB of MSTODSpare

ms offset from time entry in header00

Delta Time Entry

S Length

15 1314 12 11 10 09 0708 06 0405 03 02 0001

100 usec time

FDID

data area based on length

Packet Payload Entry

S Length SpareSf Sw R

15 1314 12 11 10 09 0708 06 0405 03 02 0001

00

02

04

06

Data Distribution

Version 1.0 23 07/22/97-10:24 AM

1.3.2.6.2 Distributed Data Packet Messages

This is the packet format that is distributed to the applications for data requests from the
ddp_server process.

Distributed Packet Layout

packet
payload
header

delta
time
entry

delta
time
entry

merged message from all gateways

packet
Payload
entry

packet
Payload
entry

packet
health

packet
payload

packet
health

packet
payload
with EOC

Packet Payload Header

<see Packet Payload Header in section 1.3.2.6.1>

Delta Time Entry

<see Payload Time Entry in section 1.3.2.6.1>

Packet Payload Entry

<see Packet Payload Entry in section 1.2.3.6.1>

100 usec time

FDID

health bits and reason code

Packet Health Entry

S Length SpareSf Sw R

15 1314 12 11 10 09 0708 06 0405 03 02 0001

00

02

04

06

08

10

Data Distribution

Version 1.0 24 07/22/97-10:24 AM

1.3.2.7 Data Distribution External Interface Calls

1.3.2.7.1 Current Value Table Interfaces

ddp_receiver ddp_senderddp_server

ddp_manager
Fusion
Process

Health
Process

ddp_connect
ddp_publish_value
ddp_disconnect

ddp_connect
ddp_subscribe_all

ddp_mainloop
ddp_disconnect

ddp_connect
ddp_subscribe
ddp_mainloop
ddp_add_callback

ddp_disconnect
ddp_delete_callback

ddp_publish_health

DDP

CCP/HCI

ddp_receiver
ddp_server

Display Appls

ddp_connect
ddp_subscribe
ddp_next_event
ddp_add_callback

ddp_disconnect
ddp_delete_callback

ddp_publish_value

ddp_unsubscribe
ddp_connect

ddp_publish_value
ddp_disconnect

ddp_poll

ddp_add_callback

Viewers
End Item Managers

ddp_publish_health

ddp_unsubscribe

ddp_unsubscribe_all

ddp_publish_fusion

Fusion
Process

Health
Process

ddp_publish_fusion ddp_publish_health

Initialization/startup:

ddp_app_add_input

Add socket input to be monitored by Xtmainloop.
ddp_add_callback

Add an event callback function to be invoked when changes arrive.
ddp_connect

Establishes a client connection with the ddp_server.
ddp_get_client_socket

Retrieves the client socket identifier.
ddp_read_socket

Retrieves information from the client socket.
ddp_reconnect

Data Distribution

Version 1.0 25 07/22/97-10:24 AM

Performs a reconnection to the server if the connection was broken.
ddp_signals

Sets a default set of signal handlers.
ddp_subscribe

Tells the server to notify client when specified FD health/value changes.
ddp_subscribe_all

Tells the server to notify client when any FD health/value changes.
ddp_flush

Flush the clients event queue.
Operational:

ddp_app_remove_input

Delete the socket connection added from the ddp_app_add_input.
ddp_dispatch_event

Reads the socket and invokes the callbacks.
ddp_mainloop

Indefinitely waits for incoming events and invokes callbacks.
ddp_next_event

Performs a ”select” waiting for incoming events.
ddp_poll

Request the health/value for a specified FD.
ddp_publish_fusion

Notifies the ddp_server to store the fusion result in the CVT for an FD.
ddp_publish_health

Notifies the ddp_server to store the health bits and reason code in the CVT for an FD.
ddp_publish_value

Notifies the ddp_server to store the value in the CVT for an FD.
Termination:

ddp_delete_callback

Removes the callback from the event notification.
ddp_disable_fds

Notifies the server to stop sending events for changed FDs.
ddp_disconnect

Performs disconnection from the server and close the socket connection.
ddp_unsubscribe

Notifies the ddp_server to unsubscribe to specified FDs.
ddp_unsubscribe_all

Notifies the ddp_server to unsubscribe to all FDs.

Data Distribution

Version 1.0 26 07/22/97-10:24 AM

1.3.3 Data Distribution Internal Interfaces

1.3.3.1 Current Value Table Format

Number of FDs

Statistical Information - TBD

CVT Header

First FDID

Last FDID

15 1314 12 11 10 09 0708 06 0405 03 02 0001

00

02

04

06
08

10

12

14

Data Distribution

Version 1.0 27 07/22/97-10:24 AM

timestamp for display attributes

data area based on length if >= 12 bytes
otherwise, contains a pointer to another location

request
for
health

request
for
value

timestamp for last reason code

timestamp for data value

display attributes

health bits and reason codes

request
for
record

ProposedCVT Record

Number of Times Stored

Spare for word alignment

Subscribe
options to
retrieve
data for
FDs

15 1314 12 11 10 09 0708 06 0405 03 02 0001

00

02

04

06
08

10

12

14

16

18

20

22

24

26
28

30

32

34

36

38

40

42

44

46
48

50

52

54

56

58

60

62

100 usec time

FDID

S Length SpareSf Sw R

The Current Value Table (CVT) contains the latest value, health, and display attributes for each
valid FD. The CVT uses shared memory to enable a restrictive set of clients (i.e. performance
monitoring, debuggers), to view the contents without impacting the performance of the main
processing.

The CVT is an array indexed by FD identifier (FDID). The CVT is initialized with values of
certain fields from the OLDB for fast access by user applications (i.e. engineering units). The
Payload Packet is stored in its entirety for performance reasons. A timestamp for the last changed
value, a timestamp for the last changed health bits, error/status code, timestamp for display
attributes, and display attributes are also stored in the CVT.

Data Distribution

Version 1.0 28 07/22/97-10:24 AM

The following CVT interfaces are provided for maintaining the CVT. They are used by Data
Distribution and FD Services for direct access into CVT. The CVT interfaces are shown below:

Current
Value
Table

cvt_openddp_server
open

cvt_read_value

cvt_read_health

cvt_write_value

cvt_write_fusion

cvt_write_health

cvt_close

ddp_server
requests

ddp_server
termination

health
outputs

fusion
outputs

value
outputs

cvt_initializeddp_server
initialization

cvt_read_record

ddp_server
requests

ddp_server
requests

cvt_read_FDFD Services

Data Distribution

Version 1.0 29 07/22/97-10:24 AM

1.3.3.2 Client List Table Formats

Client List

socket
queue

FD List

1 per FD found
in the OLDB

1 per client
connection

next

1 per client
subscribed

FDID

next

1 per FD that has been
subscribed to by the client

Sub_Client List Sub_FD List

sub_client ptr client ptr

1 per client
subscribed_all

next

Client_All List

client ptr

client ptr

next

enabled

sub_fd_ptr

ddp only

FDID

next

next
client ptr

Clients on the DDP are the ddp_receiver, ddp_sender, and the ddp_manager.
Clients on the HCI are the display applications, viewers, and user applications.
Clients on the CCP are the end item managers.

When clients connect to the ddp_server, an entry is added to the CLIENT LIST. The entry
contains socket information for notifying the client if values change.

When clients subscribe to FDs, the SUB_FD list is defined with one entry for every request.

The FD_LIST is initialized containing an entry for every FD. It contains a pointer to a linked list
for all clients subscribed to that FD. When an FD is published, the SUB Client LIST is searched
and an event is placed on the queue for every subscribed client.

Each time an FD changes, the CLIENT_ALL list is searched and an event is placed on the queue
for every client

Data Distribution

Version 1.0 30 07/22/97-10:24 AM

1.3.4 Data Distribution Structure Diagram

1.3.4.1 Receiver Object

wait for
gateway
 data

merge data
 to queue

5 ms
queued?

check for
timer or all
EODs

send EOC
message

flush
buffer
to server

more
data?

beginning
of cycle?

No

flush
buffer
to server

Yes

Yes

Yes

No

Yes

No

initializestart

Time
expired

Send
message

No

1. The 1st Header (1every 10ms) is passed to the to ddp_server.
2. Time delta packets (max of 9 every 10ms) are passed to the ddp_server as needed.
3. An EOC message is passed to the ddp_server at end of 10ms.
4. An EOC message is passed if no data is available in 10ms time period.
5. The buffer queue is flushed for every 5ms worth of data.

Data Distribution

Version 1.0 31 07/22/97-10:24 AM

1.3.4.1.1 Server Object

check for
data from
receiver

FD value
 entry?

EOC flag
received?

store in
CVT

FD health
 entry?

calc health &
timestamp &
store in CVT

No

FD fusion
 entry?

put in
client
queues

header or
time delta
 entry?

Yes

check for
data from
health/fusion

calc value &
timestamp &
store in CVT

flush buffer
to sender
and clients

No invalid entry

initializestart

flush buffer
to sender
and clients

Yes

Yes
No

Yes

Yes

No

1. The server process receives data from the receiver process, fusion/health CSCs.
2. The server will only process data from the fusion and health CSCs if there is no data to be processed from

the ddp_receiver.
3. The packet being processed will be timestamped (if from fusion or health), and stored in the CVT, unless it

is a header, time delta, or EOC message.
4. The packet will be placed in the ddp_sender and fusion/health CSCs queues.
5. Once the EOC message is processed, the EOC message is placed on the output queue and the queues are

flushed.

Data Distribution

Version 1.0 32 07/22/97-10:24 AM

1.3.4.1.2 Sender Object

wait for
data

add payload
entries to the
output buffer

 EOC
message?

output to
RTCN

10 buffers?

output to
DCN

No

initializestart

Yes

Yes

No

1. The sender process will receive packets from the ddp_server.
2. When the EOC message is received, the sender will output the buffer to the RTCN LAN using reliable

messaging.
3. If 10 packets have been sent to the RTCN, the sender will output the composite buffer to the DCN LAN

using reliable messaging.

Data Distribution

Version 1.0 33 07/22/97-10:24 AM

1.3.5 Data Distribution Test Plan

1.3.5.1 Environment

RTCNData
Generator

FD
Viewer

DCN

Data
Distribution

Analyzer

Analyzer

SDC

Gateway DDP

HCI

RTCN
CCP

1.3.5.2 Test Tools

1. Data Generator - used to output up to 8 data streams to the DDP.
2. PC Goal - used to compare data values with values on the HCI.
3. SDC - used to validate data offline.

1.3.5.2.1 Test Cases

1.3.5.3 Receiver

1. Verify ddp_receive can establish a connection with ddp_server.
2. Verify ddp_receive can establish a connection with LAN.
3. Verify ddp_receive can receive multiple data streams from the LAN.
4. Verify ddp_receive can receive packets at the SSR.
5. Verfiy ddp_receive can time-order FD change packets.
6. Verify ddp_receive can publish to ddp_server.
7. Verify ddp_receive can realize when a gateway becomes nonactive/active.

Data Distribution

Version 1.0 34 07/22/97-10:24 AM

1.3.5.3.1 Server

1. Verify the ddp_server can accept client connections.
2. Verify the ddp_server can send FD data to a polling client.
3. Verify the ddp_server can send FD data to a client after every change.
4. Verify health bits are maintained if FDs are changed from the receiver.
5. Verify timestamp information is added to fusion FDs.
6. Verify timestamp information is added to FDs undergoing a health change.
7. Verify an EOC message is passed through the ddp_server to all clients.
8. Verify the ddp_server initililzes correctly.

-Read TCID (OLDB) file.

1.3.5.3.2 Sender

1. Verify that ddp_sender can establish connection with ddp_server.
2. Verify that ddp_sender can establish connection with RTCN and DCN LAN.
3. Verify that ddp_sender can build 10 ms buffer to the RTCN LAN successfully.
4. Verify that ddp_sender can build 100 ms buffer to the DCN LAN successfully.

1.3.5.3.3 Data Distribution APIs

DD API testing will be accomplished by the development of simple code sequences that will exercise all the API
calls for initialization/startup, operational, and termination (listed in 1.3.2.7.1).

Data Distribution

Version 1.0 35 07/22/97-10:24 AM

Appendix A

Memory Private Library Object

Since mallocs are very expensive, and several small blocks of space are needed to maintain the
linked-list for the client list in the ddp_server process, a memory management object will be
defined to malloc large chunks of memory, and assign small blocks on an as needed basis. The
space will be malloced during the ddp_space_initialize call. All space will be assigned to the free
list. As space is needed, blocks will be ”moved” from the free list to the used list (which is really
just pointer manipulation).

FYI: malloc() doesnt allocate space less than 32 bytes, and for each malloc() call, 8 bytes extra are
allocated for internal pointers to the malloced space. A known problem is that after several
mallocs for linked lists, a process becomes fragmented and swapping occurs.

ddp_servermaster node

spacefree list

ddp_servermaster node

used list

space

space space

• ddp_space_initialize initialize the used and free lists

• ddp_space_get get space from the free list

• ddp_space_put put space from from the used list

Data Distribution

Version 1.0 36 07/22/97-10:24 AM

Queue Private Library Object

Queues are used to buffer communication between the ddp_server and client applications. Queues
are defined to be allocated memory where changed packets are stored in sequence to be sent to
requesting processes. The queues minimize the number of system calls (which are expensive), and
allow for the elasticity between the processes. The flush rate for the processes varies, based on the
latency.....

• ddp_queue_create create a queue

• ddp_queue_clear clear a queue contents

• ddp_queue_destroy destroy a queue

• ddp_queue_get_bufsize retrieve queue allocated size

• ddp_queue_get_size retrieve # bytes in queue

• ddp_queue_get_free_space retrieve # available bytes in queue

• ddp_get_enqueue_buf get write buffer from queue

• ddp_queue_alloc_bytes allocate the specified bytes

• ddp_get_dequeue_buf get read buffer from queue

• ddp_get_free_bytes deallocate specified amount

• ddp_queue_peek_at_data copy data into buffer

• ddp_dequeue_data read data from queue

• ddp_enqueue_data copy data into queue

• ddp_queue_resize rsize queue while preserving

contents

• ddp_queue_cache_grow grow the queue cache to add fd

• ddp_queue_reset_fd reset queue for file desc. and I/O

dir

• ddp_queue_from_fd find queue from file desc. and I/o

dir

• ddp_queue_cache_flush flush output queue to their sockets

• ddp_queue_count_cycle_bytes raise data cycle size by byte count

• ddp_queue_get_cycle_count get data cycle size counter

• ddp_queue_clear_cycle_count clear data cycle size counter

• ddp_get_enqueue_buf get write buffer from queue

Data Distribution

Version 1.0 37 07/22/97-10:24 AM

Socket Private Library Object

The socket library contains socket management utilities. The TCP socket routines are responsible
for the server and clients communications.

• ddp_accept_socket accept client connection

• ddp_close_socket close client connection

• ddp_set_connect_timeout enable/disable socket connect

timeout

• ddp_create_socket initiate connection

• ddp_open_socket connect client to server

• ddp_shutdown_socket_no_send close outgoing halp of a socket

• ddp_write_from_queue write into socket from queue

• ddp_read_from_queue read into queue from socket

• ddp_send_accept send accept packet

• ddp_send_connect send connect packet

• ddp_send_control send control packet

• ddp_send_cycle send cycle packet

• ddp_send_disconnect send disconnect packet

• ddp_send_enable send enable packet

• ddp_send_publish send publish packet

• ddp_send_response send response packet

• ddp_send_start send start packet

• ddp_send_stop send stop packet

• ddp_send_subscribe send subscribe packet

• ddp_send_unsubscribe send unsubscribe packet

• ddp_send_unpublish send unpublish packet

• ddp_send_value send value packet

• ddp_alloc_circular_buffer allocate a circular buffer

• ddp_write_buffer write the buffer out

Data Distribution

Version 1.0 38 07/22/97-10:24 AM

APPENDIX A

Statement of Work
• Provide performance data for system modeling.

• Confirm and or modify system data flow for FD Data Distribution.

• Provide the capability for the Data Distribution function to be utilized in both Operational and
Application configurations.

 DDP Data Merger Function
• Collect Gateway Change Data packets from all gateways at the system synchronous rate.

• Collect Application Change Data packets from all CCPs at System synchronous rate (No Application
Change Data packets until Thor Delivery).

• Merge Gateway Change Data and Application Change Data in to a single a stream ordered to the
nearest 0.1 ms. (No Application Change Data until Thor Delivery).

• Merge health data into data element from health table.

• Place requested FDs in queues for the Data Fusion Function.

• Place requested FDs in queues for the Data Health Function.

• Place requested FDs in queues for the Data Constraint Function (Data Constraint Function is not part
of Redstone Delivery).

• Transmit this data at system synchronous rate on the RTCN.

• Transmit this data at display synchronous rate on the DCN.

• Define and provide a method to send System Default Display Data Attribute Values. (A placeholder
will be reserved in the CVT for default Display Data Attribute values. Setting mechanism will be
defined for the Thor delivery).

• Maintain statistics on packet rates, data rates, and CPU utilization.

 CCP Data Function
• Collect RTCN Change Data Packets from the DDP at system synchronous rate.

• Place requested FDs in queues for System and User Application.

• Provide an output queue for user Application Derived FDs and transmits them to the DDP at system
synchronous rate. (No user Application Derived FDs to transmit in Redstone).

• Maintain statistics on packet rates, data rates, and CPU utilization.

 HCI Data Function
• Collect DCN Change Data Packets from the DDP at display synchronous rate.

• Place requested FDs in queues for System and User Application.

• Maintain statistics on packet rates, data rates, and CPU utilization.

 Current Value Table Function
• Maintain in the DDPs, CCPs and HCIs a Current Value Table that contains for all FDs the current data

value, its health and time of last change.

• Support all FD type including Time Homogenous and Multiword data.
• Provide separation of data for different flow zones. (Added during kickoff meeting)

